라벨이 데이터 분석인 게시물 표시

(데이터 분석) A/B 테스트

*A/B 테스트는 여러 선택지 중에서 어느 것이 가장 좋은 결과를 가져다줄지 알아보기 위한 검증방법이다. 예를들어, 배너 A와 B를 따로 광고하게 되면 외부요인의 영향이 생길 수 밖에없지만, 배너 A와 B를 동시에 광고하면 외부요인의 영향을 배제할 수 있는 것이다. 예를들어, A와 B라는 2개의 제품을 만들고 동시에 판매해서 데이터를 수집하고, 타깃 고객층에 크게 어필한 것이 어느 쪽인지 검증하는 것이다. 비용이 제법 들지만, 같은 시기에 같은 타깃 고객층에 대한 분명한 인과관계를 알 수 있기 떄문에 많이 사용한다. *A와B의 구분은 임의적이어야 한다. A/B테스트를 실시하기 위해서는 먼저 유저를 A와 B두 그룹으로 나누어야 한다. 그룹 A에는 배너 A를, 그룹 B에는 배너 B를 보여준 후 그룹 A와 그룹 B의 구매율을 비교한다. 이떄 주의해야 할 점이 있습니다. 그것은 그룹 A와 그룹 B를 나누는 방법이다. 예를들어, A: 남성 B: 여성 이렇게 나누더라도 시기적인 요인이나 게임의 이벤트, TV광고 등의 영향은 배제할 수 있을 것입니다. 그러나 게임에서 사용하는 금액은 남녀 간에 차이가 날 수 있습니다. 또한 앞에서 TV광고등의 영향을 배제할 수 있을 거라고 했지만, 곰곰히 생각해보면 남녀가 TV를 시청하는 시간이나 선호하는 방송이 다를 수 있습니다. 즉, 그룹 A와 B를 구분할 때는 두 그룹간에 '남녀'와 같은 명확한 차이가 나타나지 않도록 임의로 나눌 필요가 있습니다. 애당초 A/B테스트를 실시하는 것은 그런 '배너광고 이외의 영향'을 없애고 순순히 배너광고의 내용에 의한 차이를 보기 위해서이니깐요. 두 개의 그룹에서 조건의 차이가 생기지 않도록 하는 가장 단순한 방법은 유저 ID를 어떤 숫자로 나눈 나머지로 분류하는 방법입니다. 이 방법을 이용하면  성별, 연령대, 게임이용시작일 등의 조건이 모든 그룹에 균등학 배분될 것입니다. *A/B 테스트를 동시...