(알고리즘) 최장부분수열(LIS)의 시간복잡도 N^2--->NlogN으로 줄이기
1. Lower Bound를 이용한 방법
Our strategy determined by the following conditions,
1. If A[i] is smallest among all end candidates of active lists, we will start new active list of length 1.
2. If A[i] is largest among all end candidates of active lists, we will clone the largest active list, and extend it by A[i].
3. If A[i] is in between, we will find a list with largest end element that is smaller than A[i]. Clone and extend this list by A[i]. We will discard all other lists of same length as that of this modified list.
Note that at any instance during our construction of active lists, the following condition is maintained.
“end element of smaller list is smaller than end elements of larger lists”.
It will be clear with an example, let us take example from wiki {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}.
A[0] = 0. Case 1. There are no active lists, create one. 0. ----------------------------------------------------------------------------- A[1] = 8. Case 2. Clone and extend. 0. 0, 8. ----------------------------------------------------------------------------- A[2] = 4. Case 3. Clone, extend and discard. 0. 0, 4. 0, 8. Discarded ----------------------------------------------------------------------------- A[3] = 12. Case 2. Clone and extend. 0. 0, 4. 0, 4, 12. ----------------------------------------------------------------------------- A[4] = 2. Case 3. Clone, extend and discard. 0. 0, 2. 0, 4. Discarded. 0, 4, 12. ----------------------------------------------------------------------------- A[5] = 10. Case 3. Clone, extend and discard. 0. 0, 2. 0, 2, 10. 0, 4, 12. Discarded. ----------------------------------------------------------------------------- A[6] = 6. Case 3. Clone, extend and discard. 0. 0, 2. 0, 2, 6. 0, 2, 10. Discarded. ----------------------------------------------------------------------------- A[7] = 14. Case 2. Clone and extend. 0. 0, 2. 0, 2, 6. 0, 2, 6, 14. ----------------------------------------------------------------------------- A[8] = 1. Case 3. Clone, extend and discard. 0. 0, 1. 0, 2. Discarded. 0, 2, 6. 0, 2, 6, 14. ----------------------------------------------------------------------------- A[9] = 9. Case 3. Clone, extend and discard. 0. 0, 1. 0, 2, 6. 0, 2, 6, 9. 0, 2, 6, 14. Discarded. ----------------------------------------------------------------------------- A[10] = 5. Case 3. Clone, extend and discard. 0. 0, 1. 0, 1, 5. 0, 2, 6. Discarded. 0, 2, 6, 9. ----------------------------------------------------------------------------- A[11] = 13. Case 2. Clone and extend. 0. 0, 1. 0, 1, 5. 0, 2, 6, 9. 0, 2, 6, 9, 13. ----------------------------------------------------------------------------- A[12] = 3. Case 3. Clone, extend and discard. 0. 0, 1. 0, 1, 3. 0, 1, 5. Discarded. 0, 2, 6, 9. 0, 2, 6, 9, 13. ----------------------------------------------------------------------------- A[13] = 11. Case 3. Clone, extend and discard. 0. 0, 1. 0, 1, 3. 0, 2, 6, 9. 0, 2, 6, 9, 11. 0, 2, 6, 9, 13. Discarded. ----------------------------------------------------------------------------- A[14] = 7. Case 3. Clone, extend and discard. 0. 0, 1. 0, 1, 3. 0, 1, 3, 7. 0, 2, 6, 9. Discarded. 0, 2, 6, 9, 11. ---------------------------------------------------------------------------- A[15] = 15. Case 2. Clone and extend. 0. 0, 1. 0, 1, 3. 0, 1, 3, 7. 0, 2, 6, 9, 11. 0, 2, 6, 9, 11, 15. <-- LIS List ----------------------------------------------------------------------------
1. 첫번쨰 방법
// C++ program to find length of longest increasing subsequence
// in O(n Log n) time
#include <iostream>
#include <string.h>
#include <stdio.h>
using
namespace
std;
#define ARRAY_SIZE(A) sizeof(A)/sizeof(A[0])
// Binary search (note boundaries in the caller)
// A[] is ceilIndex in the caller
int
CeilIndex(
int
A[],
int
l,
int
r,
int
key)
{
while
(r - l > 1)
{
int
m = l + (r - l)/2;
if
(A[m]>=key)
r = m;
else
l = m;
}
return
r;
}
int
LongestIncreasingSubsequenceLength(
int
A[],
int
size)
{
// Add boundary case, when array size is one
int
*tailTable =
new
int
[size];
int
len;
// always points empty slot
memset
(tailTable, 0,
sizeof
(tailTable[0])*size);
tailTable[0] = A[0];
len = 1;
for
(
int
i = 1; i < size; i++)
{
if
(A[i] < tailTable[0])
// new smallest value
tailTable[0] = A[i];
else
if
(A[i] > tailTable[len-1])
// A[i] wants to extend largest subsequence
tailTable[len++] = A[i];
else
// A[i] wants to be current end candidate of an existing
// subsequence. It will replace ceil value in tailTable
tailTable[CeilIndex(tailTable, -1, len-1, A[i])] = A[i];
}
delete
[] tailTable;
return
len;
}
int
main()
{
int
A[] = { 2, 5, 3, 7, 11, 8, 10, 13, 6 };
int
n = ARRAY_SIZE(A);
printf
(
"Length of Longest Increasing Subsequence is %d\n"
,
LongestIncreasingSubsequenceLength(A, n));
return
0;
}
<두번째 방법>
- // length of longest increasing subsequence in O(nlogn)
- #include <iostream>
- #include <set>
- using namespace std;
- /*=========================================================*/
- void LIS(int a[],int n){
- set<int> st; set<int>::iterator it; st.clear();
- for(int i=0;i<n;i++){
- st.insert(a[i]); it = st.find(a[i]);
- it++; if(it != st.end()) st.erase(it);
- }
- cout << st.size();
- }
- /*==========================================================*/
- int main() {
- int arr[] = {2, 5, 3, 7, 11, 8, 10, 13, 6};
- int n = sizeof arr/sizeof arr[0];
- LIS(arr,n);
- }
댓글
댓글 쓰기